Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Acta Pharmacol Sin ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609561

RESUMO

Proteolysis targeting chimeras (PROTACs) have emerged as revolutionary anticancer therapeutics that degrade disease-causing proteins. However, the anticancer performance of PROTACs is often impaired by their insufficient bioavailability, unsatisfactory tumor specificity and ability to induce acquired drug resistance. Herein, we propose a polymer-conjugated PROTAC prodrug platform for the tumor-targeted delivery of the most prevalent von Hippel-Lindau (VHL)- and cereblon (CRBN)-based PROTACs, as well as for the precise codelivery of a degrader and conventional small-molecule drugs. The self-assembling PROTAC prodrug nanoparticles (NPs) can specifically target and be activated inside tumor cells to release the free PROTAC for precise protein degradation. The PROTAC prodrug NPs caused more efficient regression of MDA-MB-231 breast tumors in a mouse model by degrading bromodomain-containing protein 4 (BRD4) or cyclin-dependent kinase 9 (CDK9) with decreased systemic toxicity. In addition, we demonstrated that the PROTAC prodrug NPs can serve as a versatile platform for the codelivery of a PROTAC and chemotherapeutics for enhanced anticancer efficiency and combination benefits. This study paves the way for utilizing tumor-targeted protein degradation for precise anticancer therapy and the effective combination treatment of complex diseases.

2.
Proc Natl Acad Sci U S A ; 121(11): e2307799120, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437544

RESUMO

Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.


Assuntos
Sinais (Psicologia) , Micelas , Membrana Celular , Polímeros , RNA
3.
Bioconjug Chem ; 35(3): 351-370, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440876

RESUMO

A cationic, dendrimer-like oligo(aminoamide) carrier with four-arm topology based on succinoyl tetraethylene pentamine and histidines, cysteines, and N-terminal azido-lysines was screened for plasmid DNA delivery on various cell lines. The incorporated azides allow modification with various shielding agents of different polyethylene glycol (PEG) lengths and/or different ligands by copper-free click reaction, either before or after polyplex formation. Prefunctionalization was found to be advantageous over postfunctionalization in terms of nanoparticle formation, stability, and efficacy. A length of 24 ethylene oxide repetition units and prefunctionalization of ≥50% of azides per carrier promoted optimal polyplex shielding. PEG shielding resulted in drastically reduced DNA transfer, which could be successfully restored by active lectin targeting via novel GalNAc or mannose ligands, enabling enhanced receptor-mediated endocytosis of the carrier system. The involvement of the asialoglycoprotein receptor (ASGPR) in the uptake of GalNAc-functionalized polyplexes was confirmed in the ASGPR-positive hepatocarcinoma cell lines HepG2 and Huh7. Mannose-modified polyplexes showed superior cellular uptake and transfection efficacy compared to unmodified and shielded polyplexes in mannose-receptor-expressing dendritic cell-like DC2.4 cells.


Assuntos
Manose , Polietilenoglicóis , Azidas , DNA/metabolismo , Transfecção
4.
Adv Sci (Weinh) ; 11(14): e2305998, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38298098

RESUMO

Natural killer (NK) cells are central components of the innate immunity system against cancers. Since tumor cells have evolved a series of mechanisms to escape from NK cells, developing methods for increasing the NK cell antitumor activity is of utmost importance. It is previously shown that an ex vivo stimulation of patient-derived NK cells with interleukin (IL)-2 and Hsp70-derived peptide TKD (TKDNNLLGRFELSG, aa450-461) results in a significant upregulation of activating receptors including CD94 and CD69 which triggers exhausted NK cells to target and kill malignant solid tumors expressing membrane Hsp70 (mHsp70). Considering that TKD binding to an activating receptor is the initial step in the cytolytic signaling cascade of NK cells, herein this interaction is studied by molecular docking and molecular dynamics simulation computational modeling. The in silico results showed a crucial role of the heterodimeric receptor CD94/NKG2A and CD94/NKG2C in the TKD interaction with NK cells. Antibody blocking and CRISPR/Cas9-mediated knockout studies verified the key function of CD94 in the TKD stimulation and activation of NK cells which is characterized by an increased cytotoxic capacity against mHsp70 positive tumor cells via enhanced production and release of lytic granules and pro-inflammatory cytokines.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Receptores de Células Matadoras Naturais/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Neoplasias/metabolismo
5.
Eur J Pharm Biopharm ; 194: 95-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065313

RESUMO

Messenger RNA (mRNA) is a powerful tool for nucleic acid-based therapies and vaccination, but efficient and specific delivery to target tissues remains a significant challenge. In this study, we demonstrate lipoamino xenopeptide carriers as components of highly efficient mRNA LNPs. These lipo-xenopeptides are defined as 2D sequences in different 3D topologies (bundles or different U-shapes). The polar artificial amino acid tetraethylene pentamino succinic acid (Stp) and various lipophilic tertiary lipoamino fatty acids (LAFs) act as ionizable amphiphilic units, connected in different ratios via bisamidated lysines as branching units. A series of more lipophilic LAF4-Stp1 carriers with bundle topology is especially well suited for efficient encapsulation of mRNA into LNPs, facilitated cellular uptake and strongly enhanced endosomal escape. These LNPs display improved, faster transfection kinetics compared to standard LNP formulations, with high potency in a variety of tumor cell lines (including N2a neuroblastoma, HepG2 and Huh7 hepatocellular, and HeLa cervical carcinoma cells), J774A.1 macrophages, and DC2.4 dendritic cells. High transfection levels were obtained even in the presence of serum at very low sub-microgram mRNA doses. Upon intravenous application of only 3 µg mRNA per mouse, in vivo mRNA expression is found with a high selectivity for dendritic cells and macrophages, resulting in a particularly high overall preferred expression in the spleen.


Assuntos
Nanopartículas , Baço , Camundongos , Animais , Baço/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nanopartículas/química , Lipídeos/química , Transfecção , Macrófagos/metabolismo , Células Dendríticas/metabolismo , RNA Interferente Pequeno , Lipossomos/metabolismo
6.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069260

RESUMO

Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.


Assuntos
Neoplasias , Humanos , Camundongos , Animais , Regiões Promotoras Genéticas , Genes Reporter , Neoplasias/metabolismo , Células Dendríticas , Luciferases/metabolismo , Microambiente Tumoral
7.
Bioconjug Chem ; 34(12): 2263-2274, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37991502

RESUMO

Phosphorodiamidate morpholino oligomers (PMOs) are a special type of antisense oligonucleotides (ASOs) that can be used as therapeutic modulators of pre-mRNA splicing. Application of nucleic-acid-based therapeutics generally requires suitable delivery systems to enable efficient transport to intended tissues and intracellular targets. To identify potent formulations of PMOs, we established a new in vitro-in vivo screening platform based on mdx exon 23 skipping. Here, a new in vitro positive read-out system (mCherry-DMDEx23) is presented that is sensitive toward the PMO(Ex23) sequence mediating DMD exon 23 skipping and, in this model, functional mCherry expression. After establishment of the reporter system in HeLa cells, a set of amphiphilic, ionizable xenopeptides (XPs) was screened in order to identify potent carriers for PMO delivery. The identified best-performing PMO formulation with high splice-switching activity at nanomolar concentrations in vitro was then translated to in vivo trials, where exon 23 skipping in different organs of healthy BALB/c mice was confirmed. The predesigned in vitro-in vivo workflow enables evaluation of PMO(Ex23) carriers without change of the PMO sequence and formulation composition. Furthermore, the identified PMO-XP conjugate formulation was found to induce highly potent exon skipping in vitro and redistributed PMO activity in different organs in vivo.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Humanos , Animais , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Camundongos Endogâmicos mdx , Células HeLa , Morfolinos , Éxons
8.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896282

RESUMO

Carbon nanodots present resistance to photobleaching, bright photoluminescence, and superior biocompatibility, making them highly promising for bioimaging applications. Herein, nanoprobes were caged with four-armed oligomers and subsequently modified with a novel DBCO-PEG-modified retro-enantio peptide ligand reL57, enhancing cellular uptake into U87MG glioma cells highly expressing low-density lipoprotein receptor-related protein 1 (LRP1). A key point in the development of the oligomers was the incorporation of ε-amino-linked lysines instead of standard α-amino-linked lysines, which considerably extended the contour length per monomer. The four-armed oligomer 1696 was identified as the best performer, spanning a contour length of ~8.42 nm for each arm, and was based on an altering motive of two cationic ε-amidated lysine tripeptides and two tyrosine tripeptides for electrostatic and aromatic stabilization of the resulting formulations, cysteines for disulfide-based caging, and N-terminal azidolysines for click-modification. This work highlights that well-designed four-armed oligomers can be used for noncovalent coating and covalent caging of nanoprobes, and click modification using a novel LRP1-directed peptide ligand facilitates delivery into receptor-expressing target cells.

9.
Mol Ther Oncolytics ; 30: 238-253, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37701849

RESUMO

New treatment strategies are urgently needed for glioblastoma (GBM)-a tumor resistant to standard-of-care treatment with a high risk of recurrence and extremely poor prognosis. Based on their intrinsic tumor tropism, adoptively applied mesenchymal stem cells (MSCs) can be harnessed to deliver the theranostic sodium/iodide symporter (NIS) deep into the tumor microenvironment. Interleukin-6 (IL-6) is a multifunctional, highly expressed cytokine in the GBM microenvironment including recruited MSCs. MSCs engineered to drive NIS expression in response to IL-6 promoter activation offer the possibility of a new tumor-targeted gene therapy approach of GBM. Therefore, MSCs were stably transfected with an NIS-expressing plasmid controlled by the human IL-6 promoter (IL-6-NIS-MSCs) and systemically applied in mice carrying orthotopic GBM. Enhanced radiotracer uptake by 18F-Tetrafluoroborate-PET/magnetic resonance imaging (MRI) was detected in tumors after IL-6-NIS-MSC application as compared with mice that received wild-type MSCs. Ex vivo analysis of tumors and non-target organs showed tumor-specific NIS protein expression. Subsequent 131I therapy after IL-6-NIS-MSC application resulted in significantly delayed tumor growth assessed by MRI and improved median survival up to 60% of GBM-bearing mice as compared with controls. In conclusion, the application of MSC-mediated NIS gene therapy focusing on IL-6 biology-induced NIS transgene expression represents a promising approach for GBM treatment.

10.
Sci Rep ; 13(1): 14222, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648689

RESUMO

Ideal drug carriers feature a high loading capacity to minimize the exposure of patients with excessive, inactive carrier materials. The highest imaginable loading capacity could be achieved by nanocarriers, which are assembled from the therapeutic cargo molecules themselves. Here, we describe peptide nucleic acid (PNA)-based zirconium (Zr) coordination nanoparticles which exhibit very high PNA loading of [Formula: see text] w/w. This metal-organic hybrid nanomaterial class extends the enormous compound space of coordination polymers towards bioactive oligonucleotide linkers. The architecture of single- or double-stranded PNAs was systematically varied to identify design criteria for the coordination driven self-assembly with Zr(IV) nodes at room temperature. Aromatic carboxylic acid functions, serving as Lewis bases, and a two-step synthesis process with preformation of [Formula: see text] turned out to be decisive for successful nanoparticle assembly. Confocal laser scanning microscopy confirmed that the PNA-Zr nanoparticles are readily internalized by cells. PNA-Zr nanoparticles, coated with a cationic lipopeptide, successfully delivered an antisense PNA sequence for splicing correction of the [Formula: see text]-globin intron mutation IVS2-705 into a functional reporter cell line and mediated splice-switching via interaction with the endogenous mRNA splicing machinery. The presented PNA-Zr nanoparticles represent a bioactive platform with high design flexibility and extraordinary PNA loading capacity, where the nucleic acid constitutes an integral part of the material, instead of being loaded into passive delivery systems.


Assuntos
Nanopartículas , Nanoestruturas , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Humanos , Zircônio
11.
J Control Release ; 361: 115-129, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532151

RESUMO

Recent clinical success with Onpattro and cationic ionizable lipid nanoparticle-based mRNA vaccines has rejuvenated research in the design and engineering of broader synthetic cationic vectors for nucleic acid compaction and transfection. However, perturbation of metabolic processes and cytotoxicity are still of concern with synthetic cationic vectors. Here, through an integrated bioenergetic and biomembrane integrity probing in three different human cell lines we reveal the dynamic effect of a library of sequence-defined four-arm oligo(ethanamino)amide transfectant on cell homeostasis, and identify metabolically safe building units over wide concentration ranges. The results show differential effects of the oligo(ethanamino)amide structure of comparable molecular weight on cell energetics. The severity of polycation effect on bioenergetic crisis follows with the length of continuous protonatable diaminoethane motif in the ascending order of glutaryl-triethylene tetramine, succinyl-tetraethylene pentamine and succinyl-pentaethylene hexamine. We further identify oligomeric structures that do not induce bioenergetic crisis even at high concentrations. Finally, transfection studies with a library of polyplexes carrying a reporter gene show no correlation between transfection efficiency and cytotoxicity. These observations demonstrate the usefulness of integrated high-resolution respirometry and plasma membrane integrity probing as a highly sensitive medium-throughput screening strategy for identification and selection of safe building units for transfectant engineering.


Assuntos
Amidas , Metabolismo Energético , Humanos , Amidas/química , Linhagem Celular , Transfecção , Polietilenoimina/química
12.
J Am Chem Soc ; 145(28): 15171-15179, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37395536

RESUMO

The introduction of the CRISPR/Cas9 system in the form of Cas9/sgRNA ribonucleoproteins (RNP) is an efficient, straightforward strategy for genome editing, and potent RNP carriers are in high demand. Here, we report a series of artificial peptides based on novel ionizable amino acids that are able to deliver Cas9 RNP into cells very efficiently. Systematic variation of hydrophobic properties revealed a relationship between the xenopeptide logD7.4 and genome editing potency. By correlating the physicochemical properties with biological activity, individual optima were found for different xenopeptide sequence architectures. The optimized amphiphilic carriers enable ∼88% eGFP knockout at an RNP dose of only 1 nM and up to 40% homology-directed repair (HDR) in eGFP/BFP switchable reporter cells by co-delivery with an ssDNA template. Mechanistic studies demonstrated that hydrophobically balanced xenopeptides are more resistant to ionic stress as well as concentration-dependent dissociation and promote endocytosis by both clathrin- and macropinocytosis-mediated pathways. The systematic study develops a versatile and adjustable carrier platform and highlights impactful structure-activity relationships, providing a new chemical guide for the design and optimization of nonviral Cas9 RNP nanocarriers.


Assuntos
Sistemas CRISPR-Cas , Ribonucleoproteínas , Sistemas CRISPR-Cas/genética , Evolução Química , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes
13.
Pharmaceutics ; 15(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513976

RESUMO

Cytosolic delivery of peptides is of great interest owing to their biological functions, which could be utilized for therapeutic applications. However, their susceptibility to enzymatic degradation and multiple cellular barriers generally hinders their clinical application. Integration into nanoparticles, which can enhance the stability and membrane permeability of bioactive peptides, is a promising strategy to overcome extracellular and intracellular obstacles. Herein, we present a versatile platform for the cellular delivery of various cargo peptides by integration into metallo-peptidic coordination nanoparticles. Both termini of cargo peptides were conjugated with gallic acid (GA) to assemble GA-modified peptides into nanostructures upon coordination of Fe(III). Initial pre-complexation of Fe(III) by poly-(vinylpolypyrrolidon) (PVP) as a template favored the formation of nanoparticles, which are able to deliver the peptides into cells efficiently. Iron-gallic acid peptide nanoparticles (IGPNs) are stable in water and are supposed to generate reactive oxygen species (ROS) from endogenous H2O2 in cells via the Fenton reaction. The strategy was successfully applied to an exemplary set of peptide sequences varying in length (1-7 amino acids) and charge (negative, neutral, positive). To confirm the capability of transporting bioactive cargos into cells, pro-apoptotic peptides were integrated into IGPNs, which demonstrated potent killing of human cervix carcinoma HeLa and murine neuroblastoma N2a cells at a 10 µM peptide concentration via the complementary mechanisms of peptide-triggered apoptosis and Fe(III)-mediated ROS generation. This study demonstrates the establishment of IGPNs as a novel and versatile platform for the assembly of peptides into nanoparticles, which can be used for cellular delivery of bioactive peptides combined with intrinsic ROS generation.

14.
Adv Mater ; 35(25): e2211105, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001016

RESUMO

Taking advantage of effective intracellular delivery mechanisms of both cationizable lipids and polymers, highly potent double pH-responsive nucleic acid carriers are generated by combining at least two lipo amino fatty acids (LAFs) as hydrophobic cationizable motifs with hydrophilic cationizable aminoethylene units into novel sequence-defined molecules. The pH-dependent tunable polarity of the LAF is successfully implemented by inserting a central tertiary amine, which disrupts the hydrophobic character once protonated, resulting in pH-dependent structural and physical changes. This "molecular chameleon character" turns out to be advantageous for dynamic nucleic acid delivery via lipopolyplexes. By screening different topologies (blocks, bundles, T-shapes, U-shapes), LAF types, and LAF/aminoethylene ratios, highly potent pDNA, mRNA, and siRNA carriers are identified, which are up to several 100-fold more efficient than previous carrier generations and characterized by very fast transfection kinetics. mRNA lipopolyplexes maintain high transfection activity in cell culture even in the presence of ≥90% serum at an ultra-low mRNA dose of 3 picogram (≈2 nanoparticles/cell), and thus are comparable in potency to viral nanoparticles. Importantly, they show great in vivo performance with high expression levels especially in spleen, tumor, lungs, and liver upon intravenous administration of 1-3 µg luciferase-encoding mRNA in mice.


Assuntos
Aminas , Polímeros , Camundongos , Animais , Transfecção , Polímeros/química , RNA Mensageiro , RNA Interferente Pequeno/genética
15.
Pharm Res ; 40(1): 47-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36109461

RESUMO

Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.


Assuntos
COVID-19 , Pandemias , Humanos , Distribuição Tecidual , RNA Interferente Pequeno/genética , RNA Mensageiro/metabolismo
16.
Clin Cancer Res ; 29(5): 930-942, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516189

RESUMO

PURPOSE: Mesenchymal stem cells (MSC) have emerged as cellular-based vehicles for the delivery of therapeutic genes in cancer therapy based on their inherent tumor-homing capability. As theranostic gene, the sodium iodide symporter (NIS) represents a successful target for noninvasive radionuclide-based imaging and therapy. In this study, we applied genetically engineered MSCs for tumor-targeted NIS gene transfer in experimental glioblastoma (GBM)-a tumor with an extremely poor prognosis. EXPERIMENTAL DESIGN: A syngeneic, immunocompetent GL261 GBM mouse model was established by subcutaneous and orthotopic implantation. Furthermore, a subcutaneous xenograft U87 model was used. Bone marrow-derived MSCs were stably transfected with a NIS-expressing plasmid driven by the constitutively active cytomegalovirus promoter (NIS-MSC). After multiple or single intravenous injection of NIS-MSCs, tumoral iodide uptake was monitored in vivo using 123I-scintigraphy or 124I-PET. Following validation of functional NIS expression, a therapy trial with 131I was performed on the basis of the most optimal application regime as seen by 124I-PET imaging in the orthotopic approach. RESULTS: A robust tumoral NIS-specific radionuclide accumulation was observed after NIS-MSC and radioiodide application by NIS-mediated in vivo imaging. NIS immunofluorescence staining of GBM and non-target tissues showed tumor-selective MSC homing along with NIS expression. Application of therapeutically effective 131I led to significantly delayed tumor growth and prolonged median survival after NIS-MSC treatment as compared with controls. CONCLUSIONS: A strong tumor-selective recruitment of systemically applied MSCs into GBM was found using NIS as reporter gene followed by successful therapeutic application of radioiodide demonstrating the potential use of NIS-based MSCs as therapy vehicles as a new GBM therapy approach.


Assuntos
Glioblastoma , Células-Tronco Mesenquimais , Simportadores , Humanos , Camundongos , Animais , Radioisótopos do Iodo/uso terapêutico , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/terapia , Linhagem Celular Tumoral , Terapia Genética/métodos , Simportadores/genética , Simportadores/metabolismo , Células-Tronco Mesenquimais/metabolismo
17.
Small ; 19(2): e2205318, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399647

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system offers great opportunities for the treatment of numerous diseases by precise modification of the genome. The functional unit of the system is represented by Cas9/sgRNA ribonucleoproteins (RNP), which mediate sequence-specific cleavage of DNA. For therapeutic applications, efficient and cell-specific transport into target cells is essential. Here, Cas9 RNP nanocarriers are described, which are based on lipid-modified oligoamino amides and folic acid (FolA)-PEG to realize receptor-mediated uptake and gene editing in cancer cells. In vitro studies confirm strongly enhanced potency of receptor-mediated delivery, and the nanocarriers enable efficient knockout of GFP and two immune checkpoint genes, PD-L1 and PVR, at low nanomolar concentrations. Compared with non-targeted nanoparticles, FolA-modified nanocarriers achieve substantially higher gene editing including dual PD-L1/PVR gene disruption after injection into CT26 tumors in vivo. In the syngeneic mouse model, dual disruption of PD-L1 and PVR leads to CD8+ T cell recruitment and distinct CT26 tumor growth inhibition, clearly superior to the individual knockouts alone. The reported Cas9 RNP nanocarriers represent a versatile platform for potent and receptor-specific gene editing. In addition, the study demonstrates a promising strategy for cancer immunotherapy by permanent and combined immune checkpoint disruption.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Antígeno B7-H1/metabolismo , Ribonucleoproteínas/genética , Edição de Genes , DNA , Neoplasias/terapia , Neoplasias/genética
18.
Mol Ther Oncolytics ; 27: 272-287, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36458201

RESUMO

Sodium iodide symporter (NIS) gene transfer for active accumulation of iodide in tumor cells is a powerful theranostic strategy facilitating both diagnostic and therapeutic application of radioiodide. In glioblastoma (GBM), the blood-brain barrier (BBB) presents an additional delivery barrier for nucleic acid nanoparticles. In the present study, we designed dual-targeted NIS plasmid DNA complexes containing targeting ligands for the transferrin receptor (TfR) and the epidermal growth factor receptor (EGFR), thus providing the potential for active transport across the BBB followed by targeting of tumor cells. In vitro 125I transfection studies confirmed TfR- and EGFR-dependent transfection efficiency and NIS-specific iodide uptake of dual-targeted polyplexes. In vivo gene transfer in mice bearing orthotopic U87 GBM xenografts was assessed at 48 h after intravenous polyplex injection by positron emission tomography (PET) imaging using 18F-labeled tetrafluoroborate (TFB) as tracer. The tumoral 18F-TFB uptake of mice treated with dual-targeted polyplexes (0.56% ± 0.08% ID/mL) was significantly higher compared with mice treated with EGFR-mono-targeted (0.33% ± 0.03% ID/mL) or TfR-mono-targeted (0.27% ± 0.04% ID/mL) polyplexes. In therapy studies, application of 131I induced a superior therapeutic effect of the dual-targeted therapy, demonstrated by a significant delay in tumor growth and prolonged survival.

19.
Cancers (Basel) ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428646

RESUMO

Acquired drug resistance constitutes a serious obstacle to the successful therapy of cancer. In the process of therapy resistance, microRNAs can play important roles. In order to combat resistance formation and to improve the efficacy of chemotherapeutics, the mechanisms of the multifaceted hsa-miR-200c on drug resistance were elucidated. Upon knockout of hsa-miR-200c in breast carcinoma cells, a proteomic approach identified altered expression of glutathione S-transferases (GSTs) when cells were treated with the chemotherapeutic drug doxorubicin. In different hsa-miR-200c expression systems, such as knockout, inducible sponge and inducible overexpression, the differential expression of all members of the GST family was evaluated. Expression of hsa-miR-200c in cancer cells led to the repression of a multitude of these GSTs and as consequence, enhanced drug-induced tumor cell death which was evaluated for two chemotherapeutic drugs. Additionally, the influence of hsa-miR-200c on the glutathione pathway, which is part of the phase II detoxification mechanism, was investigated. Finally, the long-term effects of hsa-miR-200c on drug efficacy were studied in vitro and in vivo. Upon doxycycline induction of hsa-miR-200c, MDA-MB 231 xenograft mouse models revealed a strongly reduced tumor growth and an enhanced treatment response to doxorubicin. A combined treatment of these tumors with hsa-miR-200c and doxorubicin resulted in complete regression of the tumor in 60% of the animals. These results identify hsa-miR-200c as an important player regulating the cellular phase II detoxification, thus sensitizing cancer cells not expressing this microRNA to chemotherapeutics and reversing drug resistance through suppression of GSTs.

20.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298724

RESUMO

Molecular therapies exploiting mRNA vectors embody enormous potential, as evidenced by the utility of this technology for the context of the COVID-19 pandemic. Nonetheless, broad implementation of these promising strategies has been restricted by the limited repertoires of delivery vehicles capable of mRNA transport. On this basis, we explored a strategy based on exploiting the well characterized entry biology of adenovirus. To this end, we studied an adenovirus-polylysine (AdpL) that embodied "piggyback" transport of the mRNA on the capsid exterior of adenovirus. We hypothesized that the efficient steps of Ad binding, receptor-mediated entry, and capsid-mediated endosome escape could provide an effective pathway for transport of mRNA to the cellular cytosol for transgene expression. Our studies confirmed that AdpL could mediate effective gene transfer of mRNA vectors in vitro and in vivo. Facets of this method may offer key utilities to actualize the promise of mRNA-based therapeutics.


Assuntos
Infecções por Adenoviridae , COVID-19 , Humanos , Adenoviridae/genética , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Polilisina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pandemias , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Biologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...